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Numerous methods are available for suppression of the HZ0 resonance in the ‘H 
NMR spectra of water-soluble compounds ( 1). On average, these methods present 
a trade-off between the excitation profile and the level of suppression of the water 
resonance: with few exceptions, methods that yield the best solvent suppression per 
single scan tend to have a worse excitation profile than the simple “jump-and-return” 
or “ 1- 1” sequence (2) which has a relatively good, sine-bell-shaped excitation profile. 
For H20 suppression in 2D experiments, a second and even more important criterion 
is the reproducibility of HZ0 suppression from one scan to the next. Poor reproduc- 
ibility leads to t, noise in the vicinity of the HZ0 F2 frequency and the tails of this 
unsuppressed HZ0 resonance can extend into the spectral region of interest. Here 
we demonstrate that treatment of the time-domain data is an effective method for 
removing the residual HZ0 signal. This process does not require any operator interac- 
tion and therefore it can be easily included in automated data processing. 

Our approach utilizes a convolution difference of the time-domain data to remove 
the undesired solvent signal component from the free induction decay. The process 
is most easily applied for the case where the solvent signal is on-resonance, although, 
as discussed later, it can be applied independent of the position of the solvent reso- 
nance provided that complex data are acquired. Figure 1A shows the FID obtained 
with a 1- 1 sequence for a 1.5 mM solution of the protein calmodulin ( 16.7 kDa) in 
90% H20. The residual HZ0 signal is responsible for the low-frequency component 
of the signal. To a good approximation, this low-frequency component of the FID 
can be calculated by averaging neighboring time-domain data points, which is equiv- 
alent to convolution with a rectangular function. The width of the rectangle corre- 
sponds to the number of time-domain data points that are averaged. This low-fre- 
quency component is then subtracted from the original signal (Fig. 1 B). Better re- 
moval of the effect of high-frequency components to the calculated low-frequency 
signal can be obtained by convolution with an appropriately shaped (Gaussian or 
sine bell) function, i.e., by calculating a weighted average for each time-domain data 
point. Thus, the low-frequency component, L(n), of the FID, S(n), is calculated 
according to 
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where n is the number of the sampled data point, and 2K + 1 is the width of the 
convolution window. The function, f( k), defines the shape of the convolution win- 
dow. In practice, we prefer using either a sine-bell-shaped {f(k) = cos[&/(2K 
+ 2)] > or a Gaussian-shaped [f(k) = exp( -4k2/K2)] window function. The low- 
frequency component, L(n), is subtracted from the real signal, S(n), prior to Fourier 
transformation. In practice, we typically use window functions with a width of 17- 
65 (K = 8-32) data points. The real and imaginary channels of the complex time- 
domain data are treated separately and independently. 

The convolution procedure described above should not be used for the first K and 
the last Kdata points of the FID. Regular convolution of finite signals assumes period- 
icity ofthe signal (3) and in our case it would average the first with the last data points 
of the FID, a clearly undesirable feature. In this case, the Fourier transform of L( n) 
would be equivalent to multiplication of the regular frequency-domain spectrum by 
a masking function that corresponds to the Fourier transform off(k), and apart from 
distorted resonance intensities, the spectrum would remain unchanged. In contrast, 
we calculate the first data points of L(k) by linear extrapolation of its data points 
L(K)andL(K+M):L(K-k)=L(K)+k[L(K)-L(K+M)]/M.Similarly,the 
last K data points are calculated by extrapolation of data points N - K - A4 and N 
- K, where N is the number of sampled data points. 

Considering the well-known relation between convolution in the time domain and 
multiplication in the frequency domain, one may wonder whether our procedure 
could be performed in the frequency domain by multiplication with an appropriate 
window function that has a null at the solvent frequency. This is not the case. As 
pointed out above, the difference originates from the fact that our treatment is not a 
true cyclic convolution, which assumes periodicity of the time-domain signal (3)) 
but instead, it uses linear extrapolation to calculate the data points near the ends of 
the time domain. An operation equivalent to our time-domain data treatment is not 
easily performed in the frequency domain. 

The procedure is illustrated in Fig. 1. The regular free induction decay (Fig. 1 A) 
contains a large low-frequency component, originating from the H20 signal. This 
component is removed in Fig. lB, after application of the modified deconvolution 
method described above, using the Gaussian function with K = 8 and extrapolation 
with M  = 16. Figures 1 C and 1 D compare the spectra corresponding to the untreated 
and treated FID. As can be seen most clearly on the insets in Figs. 1C and ID, the 
broad dispersive tail of the residual Hz0 (Fig. 1 C) has been completely removed in 
the spectrum of Fig. lD, leaving a clean and straight baseline which does not need 
further frequency-domain manipulation, provided that the early data points of the 
FID are scaled correctly (4) or that linear prediction has been used to calculate them 
(5). The small “distortion” in the vicinity of the H20 resonance in Fig. 1 D is largely 
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FIG. 1. (A) The real part of the FID of a 1.5 mA4 sample of calmodulin in 90% H20, recorded with a 
jump-and-return sequence. (B) The corrected FID, using a Gaussian window with K = 8 and extrapolation 
with A4 = 16. (C) and(D) The Fourier transforms of(A) and(B), respectively. The insets in(C) and(D) 
illustrate that the baseline has been flattened by the time-domain correction procedure. 

a real feature, caused by the inhomogeneous broadening of the Hz0 resonance and 
the finite attenuation adjacent to the carrier frequency. When a Gaussian function is 
used as described above, the attenuation window in the frequency domain also has a 
Gaussian profile, with 50% attenuation at +-0.416SW/K from the carrier frequency, 
where SW is the total spectral width. 

The main application of our convolution method is found in the treatment of 2D 
and 3D data that have been recorded in Hz0 solution. Frequency-domain baseline 
corrections are not always straightforward in these types of experiments since it may 
be difficult to define signal-free regions, necessary for defining the baseline. It also 
should be noted that the distortion introduced by the dispersive tails of Hz0 causes a 
curved baseline that cannot be removed completely by linear baseline correction. 
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FIG. 2. The 500 MHz 2D NOESY spectra of 1.5 mM calmoduhn in 90% HzO, 47°C I30 ms mixing, 
64 scans pert i value; acquisition times were 140 ( t2) and 66 ms (t, ). Digital resolution in the final spectrum 
is 7 ( F2) and 6 Hz (F, ). The total measuring time was 17 h. Data have been acquired in the hypercomplex 
format. Data have been recorded with the NOESY pulse scheme, with the last pulse replaced by a jump- 
and-return pulse (6). Both spectra have been obtained from the same set of acquired data, using identical 
digital filtering (60” shifted sine square bell) and multiplication of the first t2 data point by an empirically 
determined factor of 4.4 (4). (A) Spectrum obtained with regular processing and application of a linear 
baseline correction in the F2 dimension for the region 10.5-5.6 ppm. (B) Spectrum obtained with time- 
domain deconvolution without frequency-domain baseline correction. Data were first Fourier transformed 
with respect to t, For t2 traces less than 0.1 ppm removed from the F, carrier frequency, a Gaussian 
window with K = 8 was used, and for all other tZ traces K = 32. For extrapolation, M = 16 for all traces. 

Our approach avoids these baseline distortions altogether and does not require any 
operator interaction for defining baseline positions. As an example, Fig. 2 compares 
the NOESY spectra of calmodulin obtained with a NOESY experiment that did not 
utilize any presaturation of the HZ0 but employed a 1- 1 read pulse at the end of the 
mixing period (6). Frequency-domain baseline correction has been applied to the 
amide region of the regular spectrum (Fig. 2A); time-domain deconvolution but no 
frequency-domain manipulation has been used for the processing of spectrum B. 
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Of course, the method described here does not make H20 suppression pulse 
schemes obsolete. To avoid overload in the RF receiver circuitry or in the ADC con- 
verter, suppression of the Hz0 signal is needed before it reaches the receiver system. 
However, the dynamic range of modern NMR spectrometers is such that a 30-fold 
suppression of the Hz0 resonance is often sufficient for obtaining ‘H NMR spectra 
with near optimal sensitivity. Such a modest level of suppression is easily obtained 
with very simple suppression schemes such as the 1- 1 sequence. Further suppression 
is then achieved by the convolution method described above. 

In the discussion above, we have assumed that the solvent signal is on-resonance. 
If the solvent signal is at the edge of the spectrum (at the Nyquist frequency), the 
same convolution procedure can be applied provided that the sign of even-numbered 
data points is changed prior to the convolution difference operation and changed 
back once completed. For complex data (with simultaneous acquisition of the real 
and imaginary channel) the solvent resonance frequency can be changed to any posi- 
tion, including the desired on-resonance position, by applying a linearly time-depen- 
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dent phase correction to the time-domain data ( 7, 8). After convolution difference, 
the frequencies can be shifted back to their original values by applying the opposite 
phase correction. 

The present method has some similarity with the data-shift-accumulation (DSA) 
technique (9) which also treats time-domain data, with the main purpose of avoiding 
problems associated with limited computer word length. This DSA method also re- 
sults in excellent suppression of the Hz0 resonance, including its dispersive tails, and 
it gives a cosinusoidal modulation of the resonance intensities and of the noise across 
the frequency-domain spectrum ( 9). Although correct intensities can be restored eas- 
ily in the frequency domain, the DSA technique introduces a linearly frequency- 
dependent phase error which results in baseline problems in the 2D spectrum unless 
a special linear prediction algorithm is used (5). 

In our laboratory, the convolution method described above has proven to be ex- 
tremely valuable for the processing of 2D and 3D spectra, recorded in Hz0 solution. 
Especially if only few scans are recorded per t, value (or per t, / t2 value for 3D) or 
when the water suppression level is not very reproducible for successive increments, 
the method results in a substantial improvement in spectral quality. The choice of 
the window function used is somewhat arbitrary: the Gaussian function has the ad- 
vantage that the attenuation window in the frequency domain also has a Gaussian 
shape; the sine-bell-shaped window permits the use of smaller K values for the same 
half-width ofthe attenuation window, resulting in less error during the linear extrapo- 
lation of the first K data points. We have not found significant differences in spectral 
quality for data sets treated with a Gaussian or with a sine-bell window. 
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